(10) lacaster mobley

Oak Village Commercial Lot 1

Transportation Impact Study
Woodland, Washington
Date:
June 18, 2024

Prepared for:
Patrick Jeffries
41st Avenue LLC

Prepared by:
Daniel Stumpf, PE

Table of Contents

Executive Summary 4
Project Description 5
Introduction 5
Location Description 5
Project Site Description 5
Vicinity Streets 6
Study Intersections 7
Site Trips 9
Trip Generation 9
150 - Warehousing 9
812 - Building Materials and Lumber Store 9
Traffic Volumes 12
Existing Conditions 12
2026 Background Conditions 13
Volume Growth 13
In-Process Data 13
2026 Buildout Conditions 13
Safety Analysis 16
Crash History Review 16
Sight Distance Evaluation 17
Methodology 17
Proposed Accesses along Green Mountain Road 18
Private Accesses along Old Pacific Highway 18
Analysis Summary 18
Warrant Analysis 18
Left-Turn Lane Warrants 18
Preliminary Traffic Signal Warrants 19
Operational Analysis 20
Intersection Capacity Analysis 20
Performance Standards 20
Delay \& Capacity Analysis 20
Conclusions 22

Appendices

Appendix A - Site Plan
Site Plan
Appendix B - Site Trip Generation \& Distribution
Trip Generation
Appendix C - Traffic Volumes
Traffic Counts
Existing Use Trip Generation
In-Process Data
Appendix D - Safety Analysis
Crash History Data
Left-turn Lane Warrant Analysis
Traffic Signal Warrant Analysis
Appendix E - Operation Analysis Level of Service Descriptions Capacity Reports

List of Figures

Figure 1: Aerial Photo of Site Vicinity (Image from Google Earth) 6
Figure 2: Vicinity Map 8
Figure 3: Traffic Volumes - AM Peak Hour 14
Figure 4: Traffic Volumes - PM Peak Hour 15

List of Tables

Table 1: Vicinity Roadway Descriptions 6
Table 2: Study Intersection Descriptions 7
Table 3: Trip Generation Summary 10
Table 4: Crash Type Summary 16
Table 5: Crash Severity and Rate Summary 16
Table 6: Intersection Capacity Analysis Summary 21

Executive Summary

1. The proposed Oak Village Commercial Lot 1 project will include the development of a lumber storage facility consisting of outdoor storage areas and two covered storage buildings, totaling approximately 52,480 square feet in gross building floor area, on three properties in Woodland, Washington. Approximately 3,000 square feet of the proposed building area will be allocated for retail activities, predominately the sale of lumber to larger scale builders/construction companies, while the remaining 48,439 square feet of building space will be dedicated to the storage of lumber. Access to the site will be provided via two driveways along Green Mountain Road, near the north and south edges of the site, and two future private access road connections to Old Pacific Highway.
2. The trip generation calculations show that the proposed project is projected to generate 13 AM peak hour trips, 16 PM peak hour trips, and 134 average weekday trips.
3. Based on the most recent five years of available crash data, no significant trends or crash patterns were identified at the intersection of Old Pacific Highway at Green Mountain Road that are indicative of safety concerns. Therefore, no crash-related mitigation is necessary or recommended as part of the proposed development.
4. Adequate sight distances are available at all proposed/future site access locations to allow for safe operation along Old Pacific Highway and Green Mountain Road. No sight distance related mitigation is necessary or recommended.
5. Left-turn lane warrants are met under 2024 existing conditions at the intersection of Old Pacific Highway at Green Mountain Road for the southeast-bound approach. Although left-turn lane warrants are met for this intersection approach, installation of the dedicated left-turn lane as part of the Oak Village Commercial Lot 1 project is not recommended given no crashes reported at the intersection per the crash data analysis could have been mitigated by the installation of the turn lane, the study intersection is projected to operate acceptably without the turn lane installed, and installation of the turn lane would be would be disproportionate to the impacts created by the proposed development.

No other turn lanes are projected to be warranted at the other study intersections under any analysis scenario. Therefore, no new left-turn lanes are necessary or recommended as part of the proposed development.
6. Traffic signal warrants are not projected to be met at the unsignalized intersection of Old Pacific Highway at Green Mountain Road under year 2026 conditions, regardless of whether or not the proposed development is constructed. Therefore, no new traffic signals are necessary or recommended as part of the proposed development application.
7. All study intersections are currently operating acceptably per City of Woodland standards and are projected to continue operating acceptably through the 2026 buildout year of the site. Accordingly, no operational mitigation is necessary or recommended at the study intersections.

Project Description

Introduction

The proposed Oak Village Commercial Lot 1 project will include the development of a lumber storage facility consisting of outdoor storage areas and two covered storage buildings, totaling approximately 52,480 square feet in gross building floor area, on three properties in Woodland, Washington. Approximately 3,000 square feet of the proposed building area will be allocated for retail activities, predominately the sale of lumber to larger scale builders/construction companies, while the remaining 48,439 square feet of building space will be dedicated to the storage of lumber. Access to the site will be provided via two driveways along Green Mountain Road, near the north and south edges of the site, and two future private access road connections to Old Pacific Highway.

Based on correspondence with City of Woodland staff, the report conducts safety and capacity/level of service analyses at the following intersections:

1. Old Pacific Highway at Green Mountain Road
2. South Site Access at Green Mountain Road
3. North Site Access at Green Mountain Road

The purpose of this study is to determine whether the transportation system within the vicinity of the site is capable of safely and efficiently supporting the existing and proposed uses, and to determine any mitigation that may be necessary to do so. Detailed information on traffic counts, trip generation calculations, safety analyses, and level of service calculations is included in the appendix to this report.

Location Description

Project Site Description

The project site is located northeast of Old Pacific Highway and west of Green Mountain Road in Woodland, Washington and consists of three properties (assessor parcel 508620100 and portions of parcels 508610100 and 508650100) which encompass an approximate total of 8.03 acres. Located within a developing area of the City, the site is surrounded by a mix of small commercial, industrial, religious, and recreational land uses, as well as undeveloped land in all directions.

The proposed facility will be predominately developed on parcel 508620100, while the other lots will accommodate future road connections to Old Pacific Highway. Access to the site will be provided via two driveways along Green Mountain Road, near the north and south edges of the site, and two future access road connections to Old Pacific Highway. For the two accesses along Green Mountain Road, it is assumed the north access is located roughly opposite the existing driveway which serves parcel 601500102 (7004 Green Mountain Road) while the south access is located opposite the driveway which serves parcel 601540100 (Lewis River Little League baseball fields).

Figure 1 presents an aerial image of the nearby vicinity with the project site outlined in yellow.

Figure 1: Aerial Photo of Site Vicinity (Image from Google Earth)

Vicinity Streets

The proposed development is located near/adjacent to two roadways: Green Mountain Road and Old Pacific Highway. Table 1 provides a description of these vicinity roadways.

Table 1: Vicinity Roadway Descriptions

Street Name	Jurisdiction	Functional Classification	Speed (MPH)	On-Street Parking	 Sidewalks	Bicycle Lanes
Old Pacific Highway	City of Woodland	Minor Arterial	35	Not Permitted	Partial Both Sides	Partial Both Sides
Green Mountain Road	City of Woodland	Major Collector	35	Not Permitted	None	None

Table Notes: Functional classification based on WSDOT Functional Classification Map.
Statutory speed based on Washington State Code Section RCW 46.61.400.

Study Intersections

Based on correspondence with City of Woodland staff, analysis of the intersection of Old Pacific Highway at Green Mountain Road and the two proposed site access intersections along Green Mountain Road is required. A summarized description of these study intersections is provided in Table 2.

Table 2: Study Intersection Descriptions

Number	Intersection	Geometry	Traffic Control	Phasing/Stopped Approaches
1	Old Pacific Highway at Green Mountain Road	Three- Legged	Stop- Controlled	Stop-Controlled SWB Approach
2	South Site Access at Green Mountain Road	Four- Legged	Stop- Controlled	Stop-Controlled EB/WB Approaches
3	North Site Access at Green Mountain Road	Four- Legged	Stop- Controlled	Stop-Controlled EB/WB Approaches

A vicinity map showing the project site, vicinity streets, and study intersection configurations are shown in Figure 2.

0

Site Trips

Trip Generation

The proposal will include the construction of a lumber storage facility consisting of outdoor storage areas and two covered storage buildings, totaling approximately 52,480 square feet in gross building floor area. Approximately 3,000 square feet of the proposed building area will be allocated for retail activities, predominately the sale of lumber to larger scale builders/construction companies, while the remaining 48,439 square feet of building space will be dedicated to the storage of lumber.

To estimate the number of trips that will be generated by the proposed development, trip rates from the Trip Generation Manual' were used. Data from the following land use codes were used to estimate the proposed development's trip generation based on the square footage of the gross building floor area.

- 150 - Warehousing
- 812 - Building Materials and Lumber Store

According to the Trip Generation Manual, the land use descriptions of the aforementioned ITE codes are as follows:

150 - Warehousing

A warehouse is primarily devoted to the storage of materials, but it may also include office and maintenance areas. High-cube transload and short-term storage warehouse (Land Use 154), highcube fulfillment center warehouse (Land Use 155), high-cube parcel hub warehouse (Land Use 156), and highcube cold storage warehouse (Land Use 157) are related uses.

812 - Building Materials and Lumber Store

A building materials and lumber store is a free-standing building that sells hardware, building materials, and lumber. The lumber may be stored in the main building, yard, or storage shed. Hardware/paint store (Land Use 816) and home improvement superstore (Land Use 862) are related uses.

Although the proposed development appears match the description for land use code 812, the strict use of data from code 812 for the entire development is not recommended for the following reasons:

- The proposed development will predominately sell lumber to large scale builders/construction companies, whereas individual homeowners will make up a smaller proportion of the facility's clientele. As such, the proposed development is expected to generate a fewer number of trips than, for example, a Parr Lumber retail business which is more reflective of the trip generation characteristics of ITE code 812.
- ITE code 812 may not be limited to trip generation data of solely lumber retailers. Since general building material sellers are considered under this land use code, the trip generation characteristics of ITE code 812 may also be reflective of stone suppliers, drywall/framing/insulation suppliers, etc.

[^0]- According to the data statistics of code 812, the average size of a typical Building Materials and Lumber Store facility ranges from approximately 16,000 to 18,000 square feet. The proposed development will include the construction of 52,480 square feet of building space, which is significantly larger than the average building size reflected in land use code 812 .
- Assuming data from code 812 is solely used to estimate trip generation of the proposed development, the project site would generate 83 AM peak hour trips, 118 PM peak hour trips, and 895 daily trips. These trip estimates are well beyond what the proposed development is expected to generate during a typical peak hour or weekday.

Based on coordination with City of Woodland staff and their transportation engineering consultant, the 3,000 square foot retail portion of the proposed use would be represented by data from land use code 812 while the remaining 48,439 square feet of space would be reflective of data from land use code 150, noting the proposed use is a lumber yard that will store large volumes of lumber only.

The trip generation calculations show that the proposed project is projected to generate 13 AM peak hour trips, 16 PM peak hour trips, and 134 average weekday trips. The trip generation estimates are summarized in Table 3. Detailed trip generation calculations are included as an attachment to this memorandum.

Table 3: Trip Generation Summary

ITE Code		Size/Rate	AM Peak Hour			PM Peak Hour			Weekday Total	
		Enter	Exit	Total	Enter	Exit	Total			
Warehousing	150		48,439 SF	6	2	8	3	6	9	83
Building Materials and Lumber Store	812	3,000 SF	3	2	5	3	4	7	51	
Total Trips			9	4	13	6	10	16	134	

Trip Distribution

The trip distribution of the proposed development was referenced from the nearby Oak Village Apartments Transportation Impact Study (TIS), dated August 19, 2021. The in-process Oak Village Apartments is located on parcel 508630100 just north of the project site. Given the close proximity of the in-process development to the project site, it's expected the trip distribution characteristics of the proposed development will similarly match those of the Oak Village Apartments.

The following trip distribution is projected:

- Approximately 75% of site trips will travel to/from the northwest along Old Pacific Highway, northwest of Green Mountain Road.
- Approximately 25% of site trips will travel to/from the southeast along Old Pacific Highway, southeast of Green Mountain Road.

The trip distribution and assignment for the site trips generated during the AM and PM peak hours are shown in Figure 3 and Figure 4, respectively.

Traffic Volumes

Existing Conditions

Traffic counts were conducted at the intersection of Old Pacific Highway at Green Mountain Road on Wednesday, May 8, 2024, from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM. Data was used from the intersection's AM and PM peak hours, which occurred between 8:00 AM - 9:00 AM and 4:35 PM - 5:35 PM.

To estimate existing year traffic volumes at the site access intersections, the following were conducted:

- Minor-street traffic volumes on the east legs of the site access intersection locations were estimated as follows:
- North Site Access at Green Mountain Road, located roughly opposite the existing south driveway which serves parcels 601500101, 102 and 103:
- The three properties are developed with a single-family detached house and approximately 27,400 square feet of industrial use building space. Trip generation for these uses was estimated using data from land use codes 110, General Light Industrial, and 210, Single-Family Detached Housing, from the Trip Generation Manual.
- Although the three properties are served by two driveways, to maintain a conservative evaluation of intersection operation all trips are assumed to travel through the existing south driveway. All trips generated by these existing uses were assumed to travel to/from the south along Green Mountain Road.
- South Site Access at Green Mountain Road, located opposite the driveway which serves parcel 601540100:
- The property is developed with three baseball fields. Trip generation for these fields was estimated using data from land use code 488, Soccer Complex, from the Trip Generation Manual. Although the Trip Generation Manual does not have a dedicated land use code for recreational baseball fields, both a soccer field and baseball field are expected to generate a similar number of trips (i.e., both are used by two similar sized teams of players with similar expected spectator turnout).
- To maintain a conservative evaluation of intersection operation all trips are assumed to travel through the existing driveway located opposite of the proposed site access rather than via Hillsdale Drive. All trips generated by the baseball fields were assumed to travel to/from the south along Green Mountain Road.
- Major-street volumes were balanced with those recorded at the intersection of Old Pacific Highway at Green Mountain Road.

The trip generation estimates of these existing uses are included in the appendix.

2026 Background Conditions

Volume Growth

To provide an analysis of the impact of the proposed development on the nearby transportation facilities, an estimate of future traffic volumes is required. In order to approximate the future year 2026 traffic volumes at the study intersections, a compounded growth rate of two percent per year for an assumed buildout condition of two years was applied to the measured existing traffic volumes.

In-Process Data

In addition to the traffic volume growth described above, there are two in-process developments that are currently approved/proposed for construction within the site vicinity that are expected to impact nearby study intersections. These in-process developments include the following:

1. Woodland Creek Subdivision
2. Oak Village Apartments

The in-process developments are not currently/fully contributing trips to the transportation system but may potentially be by the assumed 2026 buildout year of the site. Additional trips corresponding to each in-process development were added to the existing year traffic volumes in addition to the two years of traffic growth at each of the applicable study intersections. To maintain a conservative analysis of operation at the study intersections, all in-process developments were assumed to be constructed by year 2026, and all in-process trips generated by the Oak Village Apartments were assumed to solely utilize the planned north site access to travel between the apartments and Green Mountain Road. In-process development data is included in the technical appendix.

2026 Buildout Conditions

Peak hour trips calculated to be generated by the proposed development, as described earlier within the Site Trips section, were added to the projected year 2026 background traffic volumes to obtain the expected 2026 site buildout volumes.

Figure 3 and Figure 4 show the year 2024 existing, 2026 background, and 2026 buildout traffic volumes at the study intersections during the AM and PM peak hours.

lancaster mobley

Proposed Development Plan - Site Trips
AM Peak Hour

lancaster mobley

Proposed Development Plan - Site Trips
PM Peak Hour

Safety Analysis

Crash History Review

Using data obtained from the Washington Department of Transportation (WSDOT) Crash Data and Reporting Branch, a review of the most recent available five years of crash history (January 2019 to December 2023) at the intersection of Old Pacific Highway at Green Mountain Road was performed. The crash data was evaluated based on the number of crashes, the type of collisions, the severity of the collisions, and the resulting crash rate for the intersection.

Crash rates provide the ability to compare safety risks at different intersections by accounting for both the number of crashes that have occurred during the study period and the number of vehicles that typically travel through the intersection. Crash rates were calculated using the common assumption that traffic counted during the PM peak hour represents approximately 10 percent of the annual average daily traffic (AADT) at the intersection. Crash rates in excess of 1.00 crashes per million entering vehicles (CMEV) may be indicative of design deficiencies and therefore require a need for further investigation and possible mitigation.

With regard to crash severity, WSDOT classifies crashes in the following categories:

- No Apparent Injury (NA);
- Possible Injury (P);
- Suspected Minor Injury (SM);
- Suspected Serious Injury (SS); and
- Fatality or Fatal Injury.

Table 4 provides a summary of crash types while Table 5 summarizes crash severities and rates for each of the applicable study intersections. Crash data is included in the technical appendix to this report.

Table 4: Crash Type Summary

No.	Crash Type							Total	
	Intersection	Rear End	Turn	Angle	Fixed Object	Side swipe	Ped/ Bike		
1 Old Pacific Highway at Green	0	1	0	0	1	0	0	2	

Table 5: Crash Severity and Rate Summary

No.	Intersection							Total	Crash Severity	Crash
		P	SM	SS	Fatal	Unknown	Crashes	AADT	Rate	
1		2	0	0	0	0	0	2	8,550	0.13

Table Notes: BOLDED text indicates a crash rate in excess of 1.00 CMEV.

Based on a review of available crash data, no significant trends or crash patterns were identified at the intersection of Old Pacific Highway at Green Mountain Road that are indicative of safety concerns. Therefore, no crash-related mitigation is necessary or recommended as part of the proposed development.

Sight Distance Evaluation

Methodology

Sight distances were evaluated at the following site access locations:

- North Access Driveway along Green Mountain Road
- South Access Driveway along Green Mountain Road
- Northwest Future Private Street Alignment along Old Pacific Highway
- Southeast Future Private Street Alignment along Old Pacific Highway.

Sight distance was measured and evaluated in accordance with standards established in A Policy on Geometric Design of Highways and Streets ${ }^{2}$. According to AASHTO, the driver's eye is assumed to be approximately 15 feet (specifically 14.5 feet) from the near edge of the nearest travel lane (or traveled way) of the intersecting street and at a height of 3.5 feet above the minor-street approach pavement. The vehicle driver's eye-height along the major-street approach is assumed to be 3.5 feet above the cross-street pavement.

Per the AASHTO manual, intersection sight distance is an operation measure intended to provide sufficient line of sight along the major-street so that a driver could turn from the minor-street approach without impeding traffic flow. Conversely, stopping sight distance is considered the minimum requirement to ensure safe operation of an intersection. This is the distance that allows an oncoming driver to see a hazard on the roadway, react, and come to a complete stop, if necessary, to avoid a collision.

Based on posted speeds of 35 mph along Green Mountain Road and Old Pacific Highway, the following minimum intersection sight distance (per City of Woodland Standard Drawing T-28 Intersection Sight Distance Requirements) and stopping sight distance are applicable to the side street approaches on each road:

- Green Mountain Road (35 mph)
- Minimum Intersection Sight Distance: 350 feet for left-turns (viewing south) and right-turns (viewing north).
- Minimum Stopping Sight Distance: 250 feet.
- Old Pacific Highway (35 mph)
- Minimum Intersection Sight Distance: 350 feet for left-turns (viewing northwest) and right-turns (viewing southeast).
- Minimum Stopping Sight Distance: 250 feet.

[^1]
Proposed Accesses along Green Mountain Road

The proposed development will include the construction of two access driveways along Green Mountain Road, each located near the north and south edges of the site frontage with the roadway. At both locations sight distances were measured to be in excess of 400 feet to the north and south of each driveway. No sight distance related mitigation is necessary or recommended at these access locations.

Private Accesses along Old Pacific Highway

The future planned private accesses along Old Pacific Highway will be located approximately 300 feet northwest of the Belmont Loop (southeast segment) at Old Pacific Highway intersection and opposite/slightly offset to the southeast of the Belmont Loop (northwest segment) at Old Pacific Highway intersection. At the northwest access point, sight distances were measured to be in excess of 350 feet to the northwest and in excess of 400 feet to the southeast. At the southwest location, sight distances were measured to be in excess of 400 feet to the northwest and southeast. No sight distance related mitigation is necessary or recommended at these access locations.

Note that at both locations, due to topography sight distances were measured along the edge of the roadway rather than at the standard 15 feet behind the travel lane. However, no vertical/horizontal obstructions were noted that would limit sight distances to less than 350 feet if measured at the standard 15 feet (provided the minor-street approaches' elevation/grade approximately matches the major-street elevation).

Analysis Summary

Based on the sight distance analysis, adequate sight distances are available at all proposed/future site access locations to allow for safe operation along Old Pacific Highway and Green Mountain Road. No sight distance related mitigation is necessary or recommended.

Warrant Analysis

Left-turn lane and preliminary traffic signal warrants were examined for the intersection of Old Pacific Highway at Green Mountain Road and the site access intersections.

Left-Turn Lane Warrants

A left-turn refuge lane is primarily a safety consideration for the major-street, removing left-turning vehicles from the through traffic stream. The left-turn lane warrants used were developed from the National Cooperative Highway Research Project's (NCHRP) Report 457. Turn lane warrants were evaluated based on the number of advancing and opposing vehicles as well as the number of turning vehicles, the travel speed, and the number of through lanes.

Based on the analysis, left-turn lane warrants are met under 2024 existing conditions at the intersection of Old Pacific Highway at Green Mountain Road for the southeast-bound approach. Although left-turn lane warrants are met for this intersection approach, installation of the dedicated left-turn lane as part of the Oak Village Commercial Lot 1 project is not recommended for the following reasons:

- There were two reported crashes at the intersection during the analysis period which involved the following:
- A southbound motorcyclist sideswiped another vehicle stopped at the intersection.
- The driver of a southwest-bound right-turning vehicle failed to yield right-of-way to a northwest-bound vehicle.

In the context of the turn lane warrants, a left-turn lane is intended to prevent potential rear-end collisions in the applicable approach's direction of travel. As such, there were no crashes reported at the intersection which could have been mitigated by the installation of the turn lane.

- As described in the Operational Analysis section, the study intersection is projected to operate acceptably per City of Woodland standards without the turn lane installed.
- Turn lane warrants are met under existing traffic conditions without impacts from the proposed development. Since this is an existing issue not of the applicant's making, requiring the Oak Village Commercial Lot 1 project to install mitigation at an intersection that neither has a capacity or safety issue (per the crash history analysis) would be disproportionate to the impacts created by the proposed development.

No other turn lanes are projected to be warranted at the other study intersections under any analysis scenario.

Preliminary Traffic Signal Warrants

Preliminary traffic signal warrants were examined for the unsignalized study intersection of Old Pacific Highway at Green Mountain Road to determine whether the installation of a new traffic signal will be warranted at the intersection by the 2026 future year. Based on the preliminary analysis following a review of Warrant 1 in the Manual on Uniform Traffic Control Devices, or MUTCD, traffic signal warrants are not projected to be met at the unsignalized study intersection under year 2026 conditions, regardless of whether or not the proposed development is constructed. Therefore, no new traffic signals are necessary or recommended as part of the proposed development application.

Operational Analysis

Intersection Capacity Analysis

A capacity and delay analysis were conducted for each of the study intersections per the unsignalized intersection analysis methodologies in the Highway Capacity Manual (HCM) 3. Intersections are generally evaluated based on the average control delay experienced by vehicles and are assigned a grade according to their operation. The level of service (LOS) of an intersection can range from LOS A, which indicates very little or no delay experienced by vehicles, to LOS F, which indicates a high degree of congestion and delay. The volume-to-capacity (v / c) ratio is a measure that compares the traffic volumes (demand) against the available capacity of an intersection.

Performance Standards

According to the City of Woodland's Transportation Infrastructure Strategic Plan, Appendix A.1, intersections along state highways, major/minor arterials, or within the City's Urban Growth Area are required to operate at LOS D.

Delay \& Capacity Analysis

The LOS, delay, and v/c results of the capacity analysis are shown in Table 6 for the AM and PM peak hours. Detailed calculations as well as tables showing the relationship between delay and LOS are included in the appendix to this report.

[^2]Page 20 of 22

Table 6: Intersection Capacity Analysis Summary

Analysis Scenario	AM Peak Hour			PM Peak Hour		
	LOS	Delay (s)	v/c	LOS	Delay (s)	v/c
1. Old Pacific Highway at Green Mountain Road						
2024 Existing Conditions	B	13	0.25	C	16	0.25
2026 Background Conditions	B	14	0.37	C	20	0.38
2026 Buildout Conditions	B	15	0.38	C	21	0.40
2. South Site Access at Green Mountain Road						
2024 Existing Conditions	A	10	<0.01	B	10	0.02
2026 Background Conditions	B	11	<0.01	B	11	0.03
2026 Buildout Conditions	B	11	<0.01	B	11	0.03
3. North Site Access at Green Mountain Road						
2024 Existing Conditions	A	10	<0.01	A	10	0.02
2026 Background Conditions	B	11	0.07	B	12	0.03
2026 Buildout Conditions	B	11	0.07	B	12	0.04

Table Notes: BOLDED text indicates intersection operation above jurisdictional standards.
Based on the results of the operational analysis, all study intersections are currently operating acceptably per City of Woodland standards and are projected to continue operating acceptably through the 2026 buildout year of the site. Accordingly, no operational mitigation is necessary or recommended at the study intersections.

Conclusions

Based on the most recent five years of available crash data, no significant trends or crash patterns were identified at the intersection of Old Pacific Highway at Green Mountain Road that are indicative of safety concerns. Therefore, no crash-related mitigation is necessary or recommended as part of the proposed development.

Adequate sight distances are available at all proposed/future site access locations to allow for safe operation along Old Pacific Highway and Green Mountain Road. No sight distance related mitigation is necessary or recommended.

Left-turn lane warrants are met under 2024 existing conditions at the intersection of Old Pacific Highway at Green Mountain Road for the southeast-bound approach. Although left-turn lane warrants are met for this intersection approach, installation of the dedicated left-turn lane as part of the Oak Village Commercial Lot 1 project is not recommended given no crashes reported at the intersection per the crash data analysis could have been mitigated by the installation of the turn lane, the study intersection is projected to operate acceptably without the turn lane installed, and installation of the turn lane would be would be disproportionate to the impacts created by the proposed development.

No other turn lanes are projected to be warranted at the other study intersections under any analysis scenario. Therefore, no new left-turn lanes are necessary or recommended as part of the proposed development.

Traffic signal warrants are not projected to be met at the unsignalized intersection of Old Pacific Highway at Green Mountain Road under year 2026 conditions, regardless of whether or not the proposed development is constructed. Therefore, no new traffic signals are necessary or recommended as part of the proposed development application.

All study intersections are currently operating acceptably per City of Woodland standards and are projected to continue operating acceptably through the 2026 buildout year of the site. Accordingly, no operational mitigation is necessary or recommended at the study intersections.

Appendix A - Site Plan

Site Plan

Appendix B - Site Trip Generation \& Distribution
Trip Generation

TRIP GENERATION CALCULATIONS
Source: Trip Generation Manual, 11th Edition

Land Use: Warehousing
Land Use Code: 150
Land Use Subcategory: All Sites
Setting/Location General Urban/Suburban
Variable: 1000 SF GFA
Trip Type: Vehicle
Formula Type: Rate
Variable Quantity: 48.44

AM PEAK HOUR

Trip Rate: 0.17

	Enter	Exit	Total
Directional Split	77%	23%	
Trip Ends	6	2	8

WEEKDAY

Trip Rate: 1.71

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	42	41	83

PM PEAK HOUR

Trip Rate: 0.18

	Enter	Exit	Total
Directional Split	28%	72%	
Trip Ends	3	6	9

SATURDAY

Trip Rate: 0.15

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	4	3	7

TRIP GENERATION CALCULATIONS
Source: Trip Generation Manual, 11th Edition

Land Use: Building Materials and Lumber Store
Land Use Code: 812
Land Use Subcategory: All Sites
Setting/Location General Urban/Suburban
Variable: 1000 SF GFA
Trip Type: Vehicle
Formula Type: Rate
Variable Quantity: 3

WARNING: Variable Quantity is less than Minimum Survey Size for Peak Hours

AM PEAK HOUR
Trip Rate: 1.59

	Enter	Exit	Total
Directional Split	62%	38%	
Trip Ends	3	2	5

WEEKDAY

Trip Rate: 17.05

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	26	25	51

PM PEAK HOUR

Trip Rate: 2.25

	Enter	Exit	Total
Directional Split	46%	54%	
Trip Ends	3	4	7

SATURDAY

Trip Rate: 51.61

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	78	77	155

Appendix C - Traffic Volumes

Traffic Counts
Existing Use Trip Generation
In-Process Data

Note: Total study counts contained in parentheses.

	HV\%	PHF
EB	0.0%	0.00
WB	0.0%	0.76
NB	1.7%	0.71
SB	0.0%	0.78
All	0.7%	0.80

Traffic Counts - Motorized Vehicles

Interval	GREEN MTN RD Eastbound				GREEN MTN RD Westbound				OLD PACIFIC HWY Northbound				OLD PACIFIC HWY Southbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
7:00 AM	0	0	0	0	0	1	0	4	0	0	8	1	0	3	11	0	28	432
7:05 AM	0	0	0	0	0	4	0	10	0	0	7	1	0	2	9	0	33	442
7:10 AM	0	0	0	0	0	2	0	9	0	0	6	3	0	3	10	0	33	445
7:15 AM	0	0	0	0	0	3	0	6	0	0	15	0	0	1	9	0	34	456
7:20 AM	0	0	0	0	0	5	0	6	0	0	15	0	0	2	11	0	39	463
7:25 AM	0	0	0	0	0	3	0	5	0	0	12	3	0	2	13	0	38	474
7:30 AM	0	0	0	0	0	5	0	9	0	0	14	2	0	3	13	0	46	487
7:35 AM	0	0	0	0	0	2	0	6	0	0	12	5	0	2	9	0	36	503
7:40 AM	0	0	0	0	0	5	0	5	0	0	12	2	0	1	7	0	32	529
7:45 AM	0	0	0	0	0	5	0	4	0	0	12	0	0	2	11	0	34	559
7:50 AM	0	0	0	0	0	4	0	4	0	0	16	1	0	2	11	0	38	580
7:55 AM	0	0	0	0	0	2	0	5	0	0	13	4	0	2	15	0	41	588
8:00 AM	0	0	0	0	0	1	0	6	0	0	16	1	0	6	8	0	38	596
8:05 AM	0	0	0	0	0	1	0	13	0	0	7	2	0	2	11	0	36	
8:10 AM	0	0	0	0	0	5	0	11	0	0	11	3	0	0	14	0	44	
8:15 AM	0	0	0	0	0	3	0	9	0	0	15	2	0	2	10	0	41	
8:20 AM	0	0	0	0	0	1	0	8	0	0	19	3	0	3	16	0	50	
8:25 AM	0	0	0	0	0	6	0	2	0	0	26	3	0	4	10	0	51	
8:30 AM	0	0	0	0	0	0	0	7	0	0	24	6	0	7	18	0	62	
8:35 AM	0	0	0	0	0	3	0	11	0	0	26	2	0	5	15	0	62	
8:40 AM	0	0	0	0	0	1	0	7	0	0	29	2	0	3	20	0	62	
8:45 AM	0	0	0	0	0	1	0	9	0	0	21	1	0	7	16	0	55	
8:50 AM	0	0	0	0	0	3	0	9	0	0	9	3	0	5	17	0	46	
8:55 AM	0	0	0	0	0	4	0	7	0	0	7	3	0	6	22	0	49	
Count Total	0	0	0	0	0	70	0	172	0	0	352	53	0	75	306	0	1,028	
Peak Hour	0	0	0	0	0	29	0	99	0	0	210	31	0	50	177	0	596	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles					Interval Start Time	Bicycles on Roadway					Interval Start Time	Pedestrians/Bicycles on Crosswalk				
Start Time	EB	NB	WB	SB	Total		EB	NB	WB	SB	Total		EB	NB	WB	SB	Total
7:00 AM	0	0	1	0	1	7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0
7:05 AM	0	0	0	0	0	7:05 AM	0	0	0	0	0	7:05 AM	0	0	0	0	0
7:10 AM	0	0	0	0	0	7:10 AM	0	0	0	0	0	7:10 AM	0	0	0	0	0
7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0
7:20 AM	0	0	0	0	0	7:20 AM	0	0	0	0	0	7:20 AM	0	0	0	0	0
7:25 AM	0	0	0	0	0	7:25 AM	0	0	0	0	0	7:25 AM	0	0	0	0	0
7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0
7:35 AM	0	0	0	0	0	7:35 AM	0	0	0	0	0	7:35 AM	0	0	0	0	0
7:40 AM	0	0	0	1	1	7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0
7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0
7:50 AM	0	0	0	0	0	7:50 AM	0	0	0	0	0	7:50 AM	1	0	0	0	1
7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0
8:00 AM	0	0	0	0	0	8:00 AM	0	0	0	0	0	8:00 AM	0	0	0	0	0
8:05 AM	0	0	0	0	0	8:05 AM	0	0	0	0	0	8:05 AM	0	0	0	0	0
8:10 AM	0	2	0	0	2	8:10 AM	0	0	0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	0	1	0	0	1	8:15 AM	0	0	0	0	0	8:15 AM	0	0	0	0	0
8:20 AM	0	1	0	0	1	8:20 AM	0	0	0	0	0	8:20 AM	0	0	0	0	0
8:25 AM	0	0	0	0	0	8:25 AM	0	0	0	0	0	8:25 AM	0	0	1	0	1
8:30 AM	0	0	0	0	0	8:30 AM	0	0	0	0	0	8:30 AM	0	0	0	0	0
8:35 AM	0	0	0	0	0	8:35 AM	0	0	0	0	0	8:35 AM	0	0	0	0	0
8:40 AM	0	0	0	0	0	8:40 AM	0	0	0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	0	0	8:45 AM	1	0	1	0	2
8:50 AM	0	0	0	0	0	8:50 AM	0	0	0	0	0	8:50 AM	0	0	0	0	0
8:55 AM	0	0	0	0	0	8:55 AM	0	0	0	0	0	8:55 AM	0	0	0	0	0
Count Total	0	4	1	1	6	Count Total	0	0	0	0	0	Count Total	2	0	2	0	4
Peak Hour	0	4	0	0	4	Peak Hour	0	0	0	0	0	Peak Hour	1	0	2	0	3

Note: Total study counts contained in parentheses.

	HV\%	PHF
EB	0.0%	0.00
WB	0.0%	0.78
NB	0.4%	0.84
SB	0.4%	0.93
All	0.4%	0.96

Traffic Counts - Motorized Vehicles

Interval	GREEN MTN RD Eastbound				GREEN MTN RD Westbound				OLD PACIFIC HWY Northbound				OLD PACIFIC HWY Southbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
4:00 PM	0	0	0	0	0	4	0	7	0	0	8	1	0	11	38	0	69	845
4:05 PM	0	0	0	0	0	5	0	7	0	0	21	7	0	13	31	0	84	841
4:10 PM	0	0	0	0	0	7	0	6	0	0	11	6	0	5	39	0	74	823
4:15 PM	0	0	0	0	0	5	0	6	0	0	16	3	0	12	31	0	73	817
4:20 PM	0	0	0	0	0	5	0	1	0	0	12	5	0	10	31	0	64	819
4:25 PM	0	0	0	0	0	3	0	5	0	0	14	8	0	10	26	0	66	824
4:30 PM	0	0	0	0	0	2	0	5	0	0	10	3	0	14	21	0	55	837
4:35 PM	0	0	0	0	0	5	0	3	0	0	13	12	0	11	31	0	75	855
4:40 PM	0	0	0	0	0	1	0	7	0	0	15	8	0	12	33	0	76	838
4:45 PM	0	0	0	0	0	2	0	3	0	0	10	15	0	13	29	0	72	845
4:50 PM	0	0	0	0	0	6	0	6	0	0	12	4	0	5	33	0	66	837
4:55 PM	0	0	0	0	0	4	0	2	0	0	18	4	0	10	33	0	71	825
5:00 PM	0	0	0	0	0	5	0	1	0	0	13	2	0	13	31	0	65	808
5:05 PM	0	0	0	0	0	7	0	2	0	0	20	5	0	4	28	0	66	
5:10 PM	0	0	0	0	0	2	0	3	0	0	12	4	0	10	37	0	68	
5:15 PM	0	0	0	0	0	5	0	3	0	0	19	7	0	7	34	0	75	
5:20 PM	0	0	0	0	0	4	0	6	0	0	10	0	1	11	37	0	69	
5:25 PM	0	0	0	0	0	10	0	9	0	0	15	5	0	3	37	0	79	
5:30 PM	0	0	0	0	0	2	0	4	0	0	10	8	0	11	38	0	73	
5:35 PM	0	0	0	0	0	3	0	3	0	0	13	7	0	6	26	0	58	
5:40 PM	0	0	0	0	0	2	0	7	0	0	9	9	0	19	37	0	83	
5:45 PM	0	0	0	0	0	7	0	11	0	0	7	4	0	7	28	0	64	
5:50 PM	0	0	0	0	0	1	0	5	0	0	7	6	0	7	28	0	54	
5:55 PM	0	0	0	0	0	5	0	8	0	0	8	6	0	4	23	0	54	
Count Total	0	0	0	0	0	102	0	120	0	0	303	139	1	228	760	0	1,653	
Peak Hour	0	0	0	0	0	53	0	49	0	0	167	74	1	110	401	0	855	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

TRIP GENERATION CALCULATIONS
Source: Trip Generation Manual, 11th Edition
Parcels: 601500102 and 103
Land Use: General Light Industrial
Land Use Code: 110
Land Use Subcategory: All Sites
Setting/Location General Urban/Suburban
Variable: 1000 SF GFA
Trip Type: Vehicle
Formula Type: Rate
Variable Quantity: 27.4

AM PEAK HOUR

Trip Rate: 0.74

	Enter	Exit	Total
Directional Split	88%	12%	
Trip Ends	18	2	20

WEEKDAY

Trip Rate: 4.87

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	67	67	134

PM PEAK HOUR

Trip Rate: 0.65

	Enter	Exit	Total
Directional Split	14%	86%	
Trip Ends	3	15	18

SATURDAY

Trip Rate: 0.69

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	9	9	18

Caution: Small Sample Size

TRIP GENERATION CALCULATIONS
Source: Trip Generation Manual, 11th Edition
Parcel: 601500101
Land Use: Single-Family Detached Housing
Land Use Code: 210
Land Use Subcategory: All Sites
Setting/Location General Urban/Suburban
Variable: Dwelling Units
Trip Type: Vehicle
Formula Type: Rate
Variable Quantity: 1

WARNING: Variable Quantity is less than Minimum Survey Size for Peak Hours

AM PEAK HOUR

Trip Rate: 0.7

	Enter	Exit	Total
Directional Split	25%	75%	
Trip Ends	0	1	1

WEEKDAY

Trip Rate: 9.43

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	5	5	10

PM PEAK HOUR

Trip Rate: 0.94

	Enter	Exit	Total
Directional Split	63%	37%	
Trip Ends	1	0	1

SATURDAY

Trip Rate: 9.48

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	5	5	10

TRIP GENERATION CALCULATIONS
Source: Trip Generation Manual, 11th Edition
Parcel: 601540100
Land Use: Soccer Complex
Land Use Code: 488
Land Use Subcategory: All Sites
Setting/Location General Urban/Suburban
Variable: Fields
Trip Type: Vehicle
Formula Type: Rate
Variable Quantity: 3

WARNING: Variable Quantity is less than Minimum Survey Size for Peak Hours

AM PEAK HOUR

Trip Rate: 0.99

	Enter	Exit	Total
Directional Split	61%	39%	
Trip Ends	2	1	3

WEEKDAY

Trip Rate: 71.33

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	107	107	214

PM PEAK HOUR

Trip Rate: 16.43

	Enter	Exit	Total
Directional Split	66%	34%	
Trip Ends	32	17	49

SATURDAY

Trip Rate: 404.88

	Enter	Exit	Total
Directional Split	50%	50%	
Trip Ends	607	607	1,214

Caution: Small Sample Size

Owner Information	
Owner:	PLATINUM HOLDINGS LLC
Mailing Address:	PO BOX 2187
	WOODLAND, WA 98674

General Property Info

Jurisdiction:	COWLITZ
Acres:	2.6400

Photos

Curr Assmt Yr:	2023
Abbr Prop Ref:	61 (BOZARTH J DLC) 12 -5N -1W CC13169 LOT 1 EXC
	LOT 1A FEE 3235609 EXC BLA FEE 3554180 INCL BLA FEE
Sect/Township/Range:	12-5N-1W
Property Use:	WAREHOUSE
Neighborhood:	SOUTH COUNTY RURAL
Tax Code Area:	920

Current Assessed Values For 2023

Land Value:	$\$ 402,670$
Improvement Value:	$\$ 643,290$
Current Use:	$\$ 0$

Total Assessed Value: \$1,045,960

Current Taxes For 2024 Payable Year

Taxes:	$\$ 7,330.38$
Assessments:	$\$ 43.29$
Total Charges:	$\$ 7,373.67$
First Half:	$\$ 0.00$
Second Half:	$\$ 0.00$
Total Paid:	$\$ 3,686.87$
Total Due:	$\$ 3,686.80$

[^3]Cowlitz County Property Information

Property Details

Year Built - COMM 2008
Area (SQFT) - COMM BASE 9,000

Cowlitz County Property Information
Property ID: 3089179 Parcel: 601500103 Site Address: 6970 GREEN MOUNTAIN RD

Owner Information	
Owner: Mailing Address:	PLATINUM HOLDINGS LLC PO BOX 2187 WOODLAND, WA 98674
General Property Info	
Jurisdiction:	COWLITZ
Acres:	2.0100
Curr Assmt Yr:	2023
Abbr Prop Ref:	61 (BOZARTH J DLC) $12-5 \mathrm{~N}-1 \mathrm{~W}$ CC13169 LOT 2 INCL BLA FEE 3554180 EXC BLA FEE 3554180.
Sect/Township/Range: $12-5 \mathrm{~N}-1 \mathrm{~W}$	
Property Use:	PARCEL W/OUTBUILDING ONLY
Neighborhood:	SOUTH COUNTY RURAL
Tax Code Area:	920

Photos

Current Assessed Values For 2023

Land Value:	$\$ 307,130$
Improvement Value:	$\$ 997,930$
Current Use:	$\$ 0$
Total Assessed Value:	$\$ 1,305,060$

Current Taxes For 2024 Payable Year

Taxes: $\quad \$ 9,146.23$
Assessments: $\quad \$ 43.10$
Total Charges: $\quad \$ 9,189.33$
First Half: $\$ 0.00$
Second Half: $\quad \$ 0.00$
Total Paid: $\quad \$ 4,594.69$
Total Due: $\$ 4,594.64$

Cowlitz County Property Information

Property Details

Year Built - SHOP 2005
Area (SQFT) - COMM BASE 6,266
Year Built - OFFICE 2005
Area (SQFT) - COMM BASE 2,640
Year Built - DET_GAR_MET 2020
Area (SQFT) - 1,350
Year Built - WAREHOUSE 2023
Area (SQFT) - COMM BASE 8,100

AM \& PM Peak Hours

Appendix D - Safety Analysis

Crash History Data
Left-turn Lane Warrant Analysis
Traffic Signal Warrant Analysis

OFFICER REPORTED CRASHES THAT OCCURRED at OR in the vicinity of THE FOLLOWING INTERSECTION IN THE CITY OF WOODLAND

GREEN MOUNTAIN RD @ OLD PACIFIC HWY

1/01/2019-12/31/2023

Under 23 U.S. Code $\$ 148$ and 23 U.S. Code § 407, safety data, reports, surveys, schedules, lists compiled or collected for the purpose of
identifying, evaluating, or planning the safety enhancement of potential crash sites, hazardous roadway conditions, or railway-highway crossings
are not subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.

JURISDICTION	COUNTY	CITY	PRIMARY TRAFFICWAY	BLOCK NUMBER	INTERSECTING TRAFFICWAY	DIST FROM REF POINT		$\begin{aligned} & \text { COMP } \\ & \text { DIR } \\ & \text { FROM } \\ & \text { REF } \\ & \text { POINT } \end{aligned}$	REFERENCE POINT NAME	MILEPOST		SR ONLY HISTORY / SUSPENSE IND	REPORT NUMBER	DATE	TIME	MOST SEVERE INJURY TYPE		$\#$ $\#$ F V A E	S ${ }_{\text {c }}^{\#}$	VEHICLE 1 TYPE	VEHICLE 2 TYPE	JUNCTION RELATIONSHIP	WEATHER	ROADWAY SURFACE CONDITION
City Street	Cowlitz	Woodland	OLD PACIFIC HWY		GREEN MOUNTAIN RD							No	EC78658	08/26/2022	16:20	No Apparent Injury	00	02	0	Motorcycle	Pickup,Panel Truck or Vanette under $10,000 \mathrm{lb}$	At Intersection and Related	Clear	Dry
City Street	Cowlitz	Woodland	OLD PACIFIC HWY		GREEN MOUNTAIN RD							No	EB55169	08/04/2021	16:40	No Apparent Injury	0	02	0	Pickup,Panel Truck or Vanette under $10,000 \mathrm{lb}$	Pickup,Panel Truck or Vanette under $10,000 \mathrm{lb}$	At Intersection and Related	Clear or Partly Cloudy	Dry

OFFICER REPORTED CRASHES THAT OCCURRED at OR in the vicinity of THE FOLLOWING INTERSECTION IN THE CITY OF WOODLAND

GREEN MOUNTAIN RD @ OLD PACIFIC HWY

01/01/2019-12/31/2023

Under 23 U.S. Code § 148 and 23 U.S. Code § 407, safety data, reports, surveys, schedules, lists compiled or collected for the purpose of identifying,
evaluating, or planning the safety enhancement of potential crash sites, hazardous roadway conditions, or railway-highway crossings are not subject
to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such repors, surveys, schedules, lists, or data.

LIGHTING CONDITION	FIRST COLLISION TYPE / OBJECT STRUCK	VEHICLE 1 ACTION	VEHICLE 2 ACTION	VEHICLE 1 COMPASS DIRECTION FROM	VEHICLE 1 COMPASS DIRECTION TO	VEHICLE 2 COMPASS DIRECTION FROM	VEHICLE 2 COMPASS DIRECTION то	MV DRIVER CONTRIBUTING CIRCUMSTANCE 1 (UNIT 1)	MV DRIVER CONTRIBUTING CIRCUMSTANCE 2 (UNIT 1)	MV DRIVER CONTRIBUTING CIRCUMSTANCE 3 (UNIT 1)	MV DRIVER CONTRIBUTING CIRCUMSTANCE 1 (UNIT 2)	MV DRIVER CONTRIBUTING CIRCUMSTANCE 2 (UNIT 2)	MV DRIVER CONTRIBUTING CIRCUMSTANCE 3 (UNIT 2)	FIRST IMPACT LOCATION (City, County \& Misc Trafficways - 2010 forward)	WA STATE PLANE SOUTH - X 2010- FORWARD	WA STATE PLANE SOUTH - Y 2010FORWARD
Daylight	From same direction both going straight one stopped sideswipe	Going Straight Ahead	Stopped for Traffic	North	South	Vehicle Stopped	Vehicle Stopped	Unknown Distraction			None			Lane of Primary Trafficway	1068200.44	223469.37
Daylight	Entering at angle	Going Straight Ahead	Merging (Entering Traffic)	South	North	East	West	None			Did Not Grant RW to Vehicle			Lane of Primary Trafficway	1068200.44	223469.37

Left-Turn Lane Warrant Analysis

Project: Oak Village Commercial Lot 1
Intersection: 1. Old Pacific Highway at Green Mountain Road
Date: 6/11/2024
Scenario: 2026 Buildout Conditions - AM Peak Hour (SB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	27%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	259
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	256

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	307

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Oak Village Commercial Lot 1
Intersection: 1. Old Pacific Highway at Green Mountain Road
Date: 6/11/2024
Scenario: 2024 Existing Conditions - PM Peak Hour (SB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, mph:	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	22%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	512
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh/h:	241

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	338

Guidance for determining the need for a major-road left-turn bay:
Left-turn treatment warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Oak Village Commercial Lot 1
Intersection: 2. South Site Access at Green Mountain Road
Date: 6/11/2024
Scenario: 2026 Buildout Conditions - AM Peak Hour (NB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	6%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	109
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	180

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	608

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Oak Village Commercial Lot 1
Intersection: 2. South Site Access at Green Mountain Road
Date: 6/11/2024
Scenario: 2026 Buildout Conditions - AM Peak Hour (SB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	0%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	180
Opposing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	102

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	2452

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Oak Village Commercial Lot 1
Intersection: 2. South Site Access at Green Mountain Road
Date: 6/11/2024
Scenario: 2026 Buildout Conditions - PM Peak Hour (NB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	2%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	246
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	122

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	1129

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Oak Village Commercial Lot 1
Intersection: 2. South Site Access at Green Mountain Road
Date: 6/11/2024
Scenario: 2026 Buildout Conditions - PM Peak Hour (SB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	0%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	122
Opposing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	241

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	1988

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Oak Village Commercial Lot 1
Intersection: 3. North Site Access at Green Mountain Road
Date: 6/11/2024
Scenario: 2026 Buildout Conditions - AM Peak Hour (NB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	18%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	100
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	129

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	411

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Oak Village Commercial Lot 1
Intersection: 3. North Site Access at Green Mountain Road
Date: 6/11/2024
Scenario: 2026 Buildout Conditions - AM Peak Hour (SB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	0%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	129
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh/h:	82

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	2455

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Oak Village Commercial Lot 1
Intersection: 3. North Site Access at Green Mountain Road
Date: 6/11/2024
Scenario: 2026 Buildout Conditions - PM Peak Hour (NB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	24%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	209
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	74

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	395

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Oak Village Commercial Lot 1
Intersection: 3. North Site Access at Green Mountain Road
Date: 6/11/2024
Scenario: 2026 Buildout Conditions - PM Peak Hour (SB)

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	0%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	74
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	159

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	2402

Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Traffic Signal Warrant Analysis

Note: Minor street right-turning traffic volumes reduced by 25%.

Appendix E-Operation Analysis

Level of Service Descriptions
Capacity Reports

LEVEL OF SERVICE

Level of service is used to describe the quality of traffic flow. Levels of service A to C are considered good, and rural roads are usually designed for level of service C . Urban streets and signalized intersections are typically designed for level of service D . Level of service E is considered to be the limit of acceptable delay. For unsignalized intersections, level of service E is generally considered acceptable. Here is a more complete description of levels of service:

Level of service A: Very low delay at intersections, with all traffic signal cycles clearing and no vehicles waiting through more than one signal cycle. On highways, low volume and high speeds, with speeds not restricted by other vehicles.

Level of service B: Operating speeds beginning to be affected by other traffic; short traffic delays at intersections. Higher average intersection delay than for level of service A resulting from more vehicles stopping.

Level of service C: Operating speeds and maneuverability closely controlled by other traffic; higher delays at intersections than for level of service B due to a significant number of vehicles stopping. Not all signal cycles clear the waiting vehicles. This is the recommended design standard for rural highways.

Level of service D: Tolerable operating speeds; long traffic delays occur at intersections. The influence of congestion is noticeable. At traffic signals many vehicles stop, and the proportion of vehicles not stopping declines. The number of signal cycle failures, for which vehicles must wait through more than one signal cycle, are noticeable. This is typically the design level for urban signalized intersections.

Level of service E: Restricted speeds, very long traffic delays at traffic signals, and traffic volumes near capacity. Flow is unstable so that any interruption, no matter how minor, will cause queues to form and service to deteriorate to level of service F. Traffic signal cycle failures are frequent occurrences. For unsignalized intersections, level of service E or better is generally considered acceptable.

Level of service F: Extreme delays, resulting in long queues which may interfere with other traffic movements. There may be stoppages of long duration, and speeds may drop to zero. There may be frequent signal cycle failures. Level of service F will typically result when vehicle arrival rates are greater than capacity. It is considered unacceptable by most drivers.

LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-20$
C	$20-35$
D	$35-55$
E	$55-80$
F	>80

LEVEL OF SERVICE CRITERIA
FOR UNSIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-15$
C	$15-25$
D	$25-35$
E	$35-50$
F	>50

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	303	0	-	0	630	284
\quad Stage 1	-	-	-	-	284	-
\quad Stage 2	-	-	-	-	346	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1269	-	-	-	449	760
\quad Stage 1	-	-	-	-	769	-
\quad Stage 2	-	-	-	-	721	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1267	-	-	-	422	758
Mov Cap-2 Maneuver	-	-	-	-	422	-
Stage 1	-	-	-	-	724	-
Stage 2	-	-	-	-	719	-

Approach	SE	NW	SW
HCM Control Delay, s/v 1.76	0	12.45	

HCMLOS B

Minor Lane/Major Mvmt	NWT	NWR	SEL	SETSWLn1
Capacity (veh/h)	-	-396	-642	
HCM Lane V/C Ratio	-	-0.049	-0.249	
HCM Control Delay (s/veh)	-	-	8	0
12.5				
HCM Lane LOS	-	-	A	A

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Hin		\mathbf{F}			\ddagger
Traffic Vol, veh/h	1	0	79	2	0	127
Future Vol, veh/h	1	0	79	2	0	127
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	80	80	80	80	80	80
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	0	99	3	0	159

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	259	100	0	0	101	0
Stage 1	100	-	-	-	-	-
Stage 2	159	-	-	-	-	-
Critical Hdwy	6.42	6.22		-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318		-	2.218	-
Pot Cap-1 Maneuver	730	956	-	-	1491	-
Stage 1	924	-	-	-	-	-
Stage 2	870	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	730	956	-	-	1491	-
Mov Cap-2 Maneuver	730	-	-	-	-	-
Stage 1	924	-	-	-	-	-
Stage 2	870	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s/v	/v 9.94		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	730	1491	-
HCM Lane V/C Ratio		-	-	0.002	-	-
HCM Control Delay (s/ven	/veh)	-	-	9.9	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

HCM 7th TWSC
1: Old Pacific Highway \& Green Mountain Road

Intersection							

[^4]Synchro 12 Report

Intersection						

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	320	0	-	0	692	297
\quad Stage 1	-	-	-	-	297	-
\quad Stage 2	-	-	-	-	395	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1252	-	-	-	413	747
\quad Stage 1	-	-	-	-	758	-
\quad Stage 2	-	-	-	-	685	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1249	-	-	-	381	746
Mov Cap-2 Maneuver	-	-	-	-	381	-
Stage 1	-	-	-	-	701	-
Stage 2	-	-	-	-	684	-

Approach	SE	NW	SW
HCM Control Delay, s/v 2.05	0	14.32	

HCMLOS B

Minor Lane/Major Mvmt	NWT	NWR	SEL	SETSWLn1
Capacity (veh/h)	-	-457	-610	
HCM Lane V/C Ratio	-	-0.064	-0.369	
HCM Control Delay (s/veh)	-	-	8.1	0

Intersection						
Int Delay, s/veh	0					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		t			\dagger
Traffic Vol, veh/h	1	0	98	2	0	179
Future Vol, veh/h	1	0	98	2	0	179
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control St		Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	80	80	80	80	80	80
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	0	123	3	0	224

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	348	124	0	0	125	0
Stage 1	124	-	-	-	-	-
Stage 2	224	-	-	-	-	-
Critical Hdwy	6.42	6.22		-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318		-	2.218	-
Pot Cap-1 Maneuver	649	927	-	-	1462	-
Stage 1	902	-	-	-	-	-
Stage 2	813	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	649	927	-	-	1462	-
Mov Cap-2 Maneuver	649	-	-	-	-	-
Stage 1	902	-	-	-	-	-
Stage 2	813	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s/v	/v10.55		0		0	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	649	1462	-
HCM Lane V/C Ratio		-	-	0.002	-	-
HCM Control Delay (s/ven	s/veh)	-	-	10.6	0	-
HCM Lane LOS		-	-	B	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

HCM 7th TWSC
1: Old Pacific Highway \& Green Mountain Road

Intersection							

Major/Minor	Major1					
Major2	Minor2					
Conflicting Flow All	-	275	0	-	0	990

HCMLOS C

Minor Lane/Major Mvmt	NWT	NWR	SEL	SETSWLn1
Capacity (veh/h)	-	-	467	-381
HCM Lane V/C Ratio	-	-	-	-0.375
HCM Control Delay (s/veh)	-	-	-	-
HCM Lane LOS	-	-	-	-
HCM 95th \%tile Q(veh)	-	-	-	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined *: All major volume in platoon

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mn		b			$\mathbf{4}$
Traffic Vol, veh/h	17	0	208	32	0	120
Future Vol, veh/h	17	0	208	32	0	120
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	18	0	217	33	0	125

HCM LOS B

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-640	1316	-
HCM Lane V/C Ratio	-	-0.028	-	-
HCM Control Delay (s/veh)	-	-10.8	0	-
HCM Lane LOS	-	-	B	A
HCM 95th \%tile Q(veh)	-	-	0.1	0
(ven	-			

Intersection						
Int Delay, s/veh	4.7					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations		\uparrow	$\mathbf{7}$			
Traffic Vol, veh/h	71	188	218	38	43	

Major/Minor \quad N	Major1		Major2		Minor2	
Conflicting Flow All	322	0	-	0	711	298
Stage 1	-	-	-	-	298	-
Stage 2	-	-	-	-	413	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1249	-	-	-	403	746
Stage 1	-	-	-	-	758	-
Stage 2	-	-	-	-	673	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1247	-	-	-	368	745
Mov Cap-2 Maneuver	-	-	-	-	368	-
Stage 1	-	-	-		694	-
Stage 2	-	-	-	-	671	-
Approach	SE		NW		SW	
HCM Control Delay, s/v	v 2.22		0		14.65	
HCM LOS					B	
Minor Lane/Major Mvmt		NWT	NWR	SEL	SETS	WLn1
Capacity (veh/h)		-	-	493	-	601
HCM Lane V/C Ratio		-	-	0.071	-	0.383
HCM Control Delay (s/veh)		-	-	8.1	0	14.7
HCM Lane LOS		-	-	A	A	B
HCM 95th \%tile Q(veh)		-	-	0.2	-	1.8

HCM 7th TWSC
1: Old Pacific Highway \& Green Mountain Road

HCMLOS C

Minor Lane/Major Mvmt	NWT	NWR	SEL	SETSWLn1
Capacity (veh/h)	-	-	476	-
HCM Lane V/C Ratio	-	-	-	-
0.4				
HCM Control Delay (s/veh)	-	-	-	-
HCM Lane LOS	-	20.5		
HCM 95th \%tile Q(veh)	-	-	-	-
C	-	1.9		

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined *: All major volume in platoon

[^0]: ${ }^{1}$ Institute of Transportation Engineers (ITE), Trip Generation Manual, 11 ${ }^{\text {th }}$ Edition, 2021.
 Oak Village Commercial Lot 1

[^1]: ${ }^{2}$ American Association of State Highway and Transportation Officials (AASHTO), A Policy on Geometric Design of Highways and Streets, 6th Edition, 2011.

 Oak Village Commercial Lot 1

[^2]: ${ }^{3}$ Transportation Research Board, Highway Capacity Manual 7th Edition, 2022.

[^3]: Disclaimer: I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Cowlitz County nor the Assessor/Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained

[^4]: 2 EXPM Oak Village Commercial Lot 1 10:01 am 06/11/2024 2024 Existing Conditions - PM Peak Hour DS

